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Physics of moderately stretched electrified jets in electrohydrodynamic jet printing
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Electrohydrodynamic (EHD) jet printing involves the deposition of a liquid jet issuing from a needle stretched
under the effect of a strong electric field between the needle and a collector plate. Unlike the geometrically
independent classical cone-jet observed at low flow rates and high applied electric fields, at a relatively high flow
rate and moderate electric field, EHD jets are moderately stretched. Jetting characteristics of such moderately
stretched EHD jets differ from the typical cone-jet due to the nonlocalized cone-to-jet transition. Hence, we
describe the physics of the moderately stretched EHD jet applicable to the EHD jet printing process through
numerical solutions of a quasi-one-dimensional model of the EHD jet and experiments. Through comparison
with experimental measurements, we show that our simulations correctly predict the jet shape for varying flow
rates and applied potential difference. We present the physical mechanism of inertia-dominated slender EHD
jets based on the dominant driving and resisting forces and relevant dimensionless numbers. We show that the
slender EHD jet stretches and accelerates primarily due to the balance of driving tangential electric shear and
resisting inertia forces in the developed jet region, whereas in the vicinity of the needle, driving charge repulsion
and resisting surface tension forces govern the cone shape. The findings of this study can help in operational
understanding and better control of the EHD jet printing process.
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I. INTRODUCTION

Electrohydrodynamic (EHD) jet printing is a high-
resolution direct ink writing (DIW) technique in which an
electrified jet of a liquid issuing from a needle is deposited
on a motion-controlled substrate [1]. The liquid flowing out
from the needle having an outer diameter of O(0.1−1 mm)
stretches and accelerates under the effect of an external
electric field of O(106 V m−1) between the needle and
the substrate. Although EHD jet printing is derived from the
electrospinning process [2], it differs from the latter in the
way that the collector substrate is kept relatively very close to
the needle to suppress the downstream flow instabilities [3,4].
EHD jet printing has enormous potential for precisely patter-
ing sub-micrometer-scale features suited to a large spectrum
of applications such as scaffolds for tissue engineering [5],
drug delivery devices [6], printed electronics [7,8], and mi-
crofluidic devices [9].

Unlike the conventional DIW process, the EHD jet print-
ing allows patterning a wide range of feature sizes ranging
from the needle diameter to as small as two orders of mag-
nitude smaller than the needle diameter, depending on the
electric field and flow rate. In the EHD jet printing configu-
ration, stable EHD jetting can occur in three distinct regimes:
cone-jet, moderately stretched jet, and thick jet regimes [10].
The cone-jet regime is characterized by a conical meniscus,
named the Taylor cone [11], attached to the needle with a
fine jet streaming from the tip of the cone. The cone-jet
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regime is used to print fine features of O(1−10 µm). The
localized nature of cone-to-jet transition in the cone-jet regime
enables jetting characteristics to be independent of the down-
stream conditions [12]. Therefore, jetting characteristics in
the cone-jet regime are identical in both the electrospraying
and the EHD jet printing processes despite the differences
in the downstream geometrical configuration. The physics
of the cone-jet regime has been well described through nu-
merous experimental and numerical studies [12–26]. To this
end, experimentally validated full-scale three-dimensional
(3D) [19–24], 2D axisymmetric simulations [25,26], and sim-
plified quasi-one-dimensional mathematical models [27,28]
have been presented in the literature.

Opposed to the cone-jet regime, the thick jet occurs at a
relatively high flow rate and low applied electric field. In the
thick jet regime, the jet is negligibly stretched, and its diameter
remains approximately equal to the needle diameter. EHD
jetting in the moderately stretched jet regime occurs at operat-
ing conditions between the cone-jet and the thick jet regimes.
The moderately stretched jet is characterized by a slender jet
with a gradual cone-to-jet transition. The moderately stretched
jet can be used to print features that are relatively broad but
finer than the needle diameter. In this work, we focus on the
modeling and simulation of the moderately stretched EHD
jet applicable in EHD jet printing, where the gap between
the needle and substrate is relatively small. This regime is
specific to the EHD jet printing process, and corresponding
EHD jetting characteristics are not well reported in the lit-
erature. Numerical simulations of the slender EHD jets have
been reported earlier by Gañán-Calvo [29], Feng [30], and
Higuera [31]. However, their simulations are applicable to the
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FIG. 1. Schematic illustration of an electrically charged slender
jet of a leaky-dielectric liquid. The jet is characterized by an elon-
gated conical meniscus that gradually transitions to a thin jet. The
collector substrate is placed relatively close to the metallic needle as
opposed to electrospraying.

electrospinning configuration, wherein the needle-to-collector
distance is much larger than the cone-to-jet transition region.
In contrast, in the present study, the length of the cone-to-
jet transition region is comparable to the needle-to-collector
distance because, in EHD jet printing, the needle-to-collector
distance is significantly smaller. Therefore, the characteristics
of moderately stretched slender EHD jets can significantly
depend on the downstream conditions.

In this paper, we describe the physics of slender EHD
jets observed in near-field EHD jet printing through exper-
imentally validated numerical simulations. The numerical
simulations allow predictions of variation of physical quan-
tities such as local electric field, surface charge density, and
the conduction and convection current components, which
are otherwise impossible to measure in an experiment. Based
on the simulation results for varying flow rates and ap-
plied electric field, we provide insights into the physical
mechanism of moderately stretched EHD jets in EHD jet
printing. We begin by discussing the mathematical model
and the numerical scheme in Sec. II. Section III presents
experiments and the validation of simulation results with the
experimental data, Sec. IV describes the EHD jetting behav-
ior using the simulations, and Sec. V gives the concluding
remarks.

II. MATHEMATICAL MODELING

We consider a moderately stretched slender EHD jet of a
leaky-dielectric liquid flowing out of a needle. The electric
field is applied between the needle and the large collector
substrate by connecting a high voltage terminal to the metallic
needle of outer radius R0 while grounding the substrate, as
shown in Fig. 1. The ground electrode is kept at a distance

L from the needle tip, such that L/R0 � 20, to suppress the
disintegration of the jet into droplets before it impinges on
the collector substrate. Leaky-dielectric liquids are conducting
enough to ensure quick conduction of charges to the free sur-
face. However, unlike conductors, these liquids also support
the tangential electric shear stress that stretches the liquid
meniscus and drives the flow in the direction of the elec-
tric field [32,33]. Besides the normal and tangential electric
stresses on the liquid surface, the jetting behavior is governed
by inertia, viscous, capillary, and gravity forces. The net ef-
fect of these forces is such that the jet diameter gradually
decreases downstream of the needle, as illustrated in Fig. 1.
In the presence of an external electric field, charges within the
liquid quickly migrate to the free surface and modify the local
electric field. The charges migrate to the free surface through
conduction, and from there, charges move downstream by
surface convection. Therefore, the total current carried by an
EHD jet comprises of bulk conduction and surface convection
currents. The conduction current dominates near the needle
tip, while the surface convection current dominates down-
stream of the cone-to-jet transition region.

The underlying physics of EHD jets in a needle-plate
configuration can be described by performing full-scale 3D
or axisymmetric simulations [26]. Besides these methods,
quasi-one-dimensional models have also been employed for
deriving scaling laws based on the balance between dominant
driving and resisting forces [34,35]. However, quasi-1D ap-
proximation leads to inaccurate results for the cone-jet regime,
wherein the cone transitions to the jet abruptly over a small
cone-to-jet transition region with length Lt � dn, where dn is
the outer diameter of the needle [36]. Due to the significant
disparity in length scales of the cone and the jet, the quasi-1D
approximation has been applied separately in the cone and the
jet regions to derive the scaling laws for the jet radius and the
current carried by the jet [35]. However, as opposed to the
cone-jet regime, for moderately stretched EHD jets, the tran-
sition length Lt is significantly large and the conical meniscus
gradually transitions to a jet. Therefore, the quasi-1D model
can directly be used to predict the physical variables of the
entire slender EHD jet.

A. Governing equations

We consider a stable and steady jet of a leaky-dielectric
liquid having physical properties: density ρ, dynamic vis-
cosity η, interfacial tension γ , electrical conductivity k, and
dielectric permittivity ε in a dielectric medium of permittivity
ε0 and considerably lower density and viscosity. We assume
that the jet radius R = R(z) varies gradually along the z di-
rection, and is symmetrical about the centroidal axis of the
needle. Under the assumption of fast charge relaxation and
momentum diffusion, the EHD jetting under these conditions
can be approximated as a quasi-one-dimensional flow prob-
lem from the beginning. The steady-state quasi-1D governing
equations for mass and momentum conservation and cur-
rent continuity based on the Taylor-Melcher leaky-dielectric
model [33] for an electrified jet of a Newtonian liquid were
first presented by Gañán-Calvo [29]. Subsequently, this model
was improved by Hohman et al. [37,38], and Feng [30] to
model the electric field using Coulomb’s law. Briefly, these
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equations are summarized here. For a steady EHD jet, the
conservation of mass and current can be expressed as

Q = πR2v and (1)

I = πR2kE + 2πRσv, (2)

respectively. Here Q is the constant flow rate, R the jet radius,
v the mean axial velocity, I the total current, E the electric
field along the center line of the jet, and σ is the surface charge
density that can be expressed as σ = ε0En, where En is the
local normal electric field on the jet surface. The first term on
the right-hand side of Eq. (2) represents the bulk conduction
current Ic, while the second term corresponds to the surface
convection current Is. Note that, for steady EHD jetting, the
total current I is invariant of z but depends on the operating
flow rate and external electric field.

The momentum conservation equation, which describes
the balance of hydrodynamic and electrical forces on the jet,
is given as

d

dz

(
ρv2

2

)
= ρg + 3

R2

d

dz

(
ηR2 dv

dz

)
+ 2σE

R

+ d

dz

[
σ 2

2ε0
− γ

R
+ ε0(εr − 1)E2

2

]
. (3)

Here the left-hand side corresponds to the inertia force per unit
volume, and the terms on the right-hand side correspond to the
gravity, viscous, tangential electric shear, charge repulsion,
interfacial tension, and polarization forces per unit volume,
respectively.

Gañán-Calvo [29] proposed a method to determine v, σ , or
(En = σ/ε0) by utilizing the mathematical model described
by Eqs. (1)–(3) as a consistent measurement tool. In this
approach, Gañán-Calvo used experimentally measured val-
ues of R(z) and I to make quantitative measurements of all
the remaining variables involved in the EHD jet dynamics,
including surface charge density, various force terms, and
conduction and convection current components. Later, the
same methodology was followed by López-Herrera et al. [28]
to show the validity of the quasi-1D model for modeling
cone-jets. López-Herrera et al. [28] used the R(z) and I ob-
tained from 2D numerical simulations as the inputs to the
model. The approach of Gañán-Calvo [29] and López-Herrera
et al. [28] does not provide a self-consistent formulation
to calculate all the variables for given operating parameters
and boundary conditions, because the electric field is not
modelled using Coulomb’s law. Instead, the electric field is
quantified using the mass, momentum, and charge conserva-
tion laws, using measured R(z) and I .

Later, Hohman et al. [37,38] modified the simplified quasi-
1D model of Gañán-Calvo [29] by separately modeling the
electric field using Coulomb’s law. The electrostatic potential
along the center line of the jet is modelled as a sum of the
applied potential between the needle and the collector plate in
the absence of the jet and the potential due to an effective
line charge density corresponding to free and polarization
charges. To approximately satisfy the potential drop between
the needle and the collector plate, Hohman et al. [38] incor-
porated the contribution of image charges in the Coulomb’s
law. Hohman et al. [38] also incorporated in their model the

numerically predicted fringe electric field due to the needle
protruding the plate-electrode in their setup. However, their
model was prone to a ballooning instability and numerically
stable solution was obtained for low conductivity liquids when
σ (z = 0) ≈ 0.

Feng [30] modified the quasi-1D model of Hohman et al.
[38] by simplifying the integrodifferential equation of the
electric field corresponding to the Coulomb’s law using an
asymptotic approximation of the integral [39]. The simplified
equation of the electric field E along the center line of the jet
due to total surface charges (free and polarization charge) is
expressed as

E = E∞ − ln χ

[
1

ε0

d

dz
(σR) − (εr − 1)

2

d2

dz2
(ER2)

]
, (4)

where E∞ denotes the external electric field in the absence
of the jet, εr = ε/ε0 is the relative permittivity of the liquid,
and χ = L/R0 is the aspect ratio, L is the needle-to-collector
distance and R0 = dn/2 is the outer radius of the needle. Feng
[30] showed that the use of this equation improves the numer-
ical stability. Moreover, the model is insensitive to the inlet
boundary condition for the surface charge density, except for
a tiny boundary layer near the needle. However, the trade-off
is that a constant potential drop across the needle and the col-
lector cannot be enforced. Consequently, the experimentally
measured current is required as a model input, instead of the
applied potential drop.

Here we follow Feng’s approach and model electric field
using Eq. (4) and taking experimentally measured current
as a model input. Using Eqs. (1)–(4), the four unknowns R,
v, σ , and E can be obtained numerically provided that Q
and I are known from the experiments. Equations (1)–(4)
can be expressed in dimensionless form by nondimension-
alizing the physical quantities using the following reference
scales:

[R, z] = R0, [v] = Q

πR2
0

, [E ] = I

πkR2
0

,

and [σ ] = ε0I

πkR2
0

. (5)

The governing equations (1)–(4) in the dimensionless form
are given as

R̃2ṽ = 1, (6)

Ẽ R̃2 + Peσ̃ R̃ṽ = 1, (7)

d
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2
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− 1
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− 3

Re

1
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d

dz̃
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R̃2 d ṽ

dz̃
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+ 1

We

d

dz̃
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1
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)
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σ̃ 2

2
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Ẽ2

2
+ 2σ̃ Ẽ
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)
= 0, (8)

Ẽ (z) − Ẽ∞ + ln χ

[
d

dz̃
(σ̃ R̃) − β

2

d2

dz̃2
(Ẽ R̃2)

]
= 0, (9)

where the tilde over variable denotes corresponding the nondi-
mensional variable. Here, Pe, Fr, Re, We, β, and E are
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dimensionless group defined as electric Peclet number Pe =
2ε0v0/(kR0), Froude number Fr = v2

0/(gR0), Reynolds num-
ber Re = ρv0R0/η, Weber number We = ρv2

0R0/γ , electric-
to-inertia force E = ε0E2

0 /(ρv2
0 ), and β = (εr − 1). Also, note

that the total current I is a model parameter, and its ex-
perimentally measured value for a given fluid and operating
parameters (Q and φ) is required as an input by the model.

B. Boundary conditions

The set of two ordinary differential equations (ODEs)
Eq. (8) and Eq. (9), along with two algebraic equations (6)
and (7) can be solved numerically. These ODEs require
four boundary conditions (BCs), one for each R̃ and Ẽ at
the needle tip and downstream. The jet radius at the tip of
the needle is equal to the outer radius of the needle, and hence

R̃(z̃ = 0) = 1. (10)

For a one-dimensional slender EHD jet, Feng [30] suggested
that the BCs for the electric field at the inlet can be obtained
from the charge conservation equation, Eq. (2), provided that
the surface charge density is defined at the needle outlet for a
given current I . The surface charge density at the needle outlet
σ (0) primarily depends on the physical properties of the fluid
and the overall geometrical configuration; however, finding
the exact value of σ (0) for a given fluid and geometrical
configuration is tedious. Moreover, through numerical simu-
lations, Feng [30] showed that the effect of σ (0) is limited to a
very small distance z � R0 in the vicinity of the needle outlet.
Consequently, any value of σ (0) leads to an identical jet
profile outside a tiny boundary layer region [30]. Therefore,
we considered σ (0) = 0, and correspondingly from Eq. (7),
the BC for Ẽ is

Ẽ (z̃ = 0) = 1. (11)

The downstream BCs for a slender EHD jet in the near-
electrode configuration of a needle-plate arrangement can
significantly differ from the far electrode needle-plate and the
far electrode parallel plate configuration, analyzed earlier by
Feng [30] and Higuera [31], respectively. For parallel plate
far electrode configuration of slender EHD jet, Feng used Ẽ =
Ẽ∞ and R̃′ = −R̃/4χ at z̃ = χ , which is based on the assump-
tion that the surface convection current is equal to the total
current carried by the jet and Ẽ∞ is uniform. However, in the
current case, E∞ varies with z, and both the conduction and
the convection currents are relevant downstream of the cone.
Therefore, the downstream BCs for modeling electrospinning
are not applicable to the moderately stretched jet in an EHD
jet printing configuration. The experimental observations of
Singh et al. [10] shows that the radius of the moderately
stretched jet in the inertia-dominated regime attains an asymp-
totic limit close to the collector plate. Therefore, we use a
simplified downstream BC for jet radius as

R̃′(z̃ = χ ) = 0. (12)

Our numerical experiments show that the jet profile obtained
by considering R̃′(z̃ = χ ) = 0 is almost identical to that ob-
tained from R̃ + 4χ R̃′ = 0. This is because inertia-dominated
EHD jets reach an asymptotic radius even over a small

needle-to-collector distance, and the viscous effects due to jet
impingement are confined close to the collector.

Beyond the current transfer region, the axial electric field
is approximately equal to the external field, E ≈ E∞, during
stable EHD jetting [30,31]. The external electric field for a
needle-plate configuration can be approximated as the elec-
tric field due to two confocal paraboloid surfaces (one as a
paraboloid needle and another large paraboloid plate) placed
at a distance z = dn/4 + L, here dn denotes the outer diameter
of the needle [10]. Under such assumption, far from the needle
tip, the electric field scales as E∞ ∼ A/z along the center line
of the needle, where A = φ/ ln(2χ ). Even numerical simu-
lation in the exact needle and a plate configuration, shown
later in Fig. 4, suggests that E∞ ∼ A/z. Therefore, we take
the fourth BC as

Ẽ + χ Ẽ ′ = 0 at z̃ = χ. (13)

C. Numerical scheme

The mathematical model [Eqs. (6)–(9)] requires dimen-
sionless parameters (Re, We, Fr, Pe, E , and β) and external
electric field E∞ as the inputs. The dimensionless parameters
depend on the physical properties of the liquid, operating
parameters, and current curried by the jet I . Hence we used the
physical properties, operating parameters, and corresponding
measured values of the current I from EHD jetting experi-
ments for all simulations; these experiments are discussed in
Sec. III. We computed the external electric field E∞ in the
absence of the jet, corresponding to the exact experimental
configuration described in Sec. III. To this end, we performed
2D-axisymmetric simulations using a commercial finite ele-
ment solver and obtained the axial component of the electric
field at r = 0 corresponding to different values of the applied
electric potential φ. The details of the numerical procedure to
obtained external electric field E∞ is discussed in Appendix.

Knowing the values of dimensionless numbers and the
external electric field E∞, we numerically solved the coupled
set of ODEs using boundary value solver bvp5c in MATLAB.
The bvp5c solver requires a good initial guess of the solutions
(R̃ and Ẽ ). We considered an analytical solution of a purely
gravity-driven inviscid jet as an initial guess for the jet radius
and a linearly varying Ẽ as the initial guess for the axial elec-
tric field. We slowly ramped the values of E , which controls
the strength of electric forces from zero to the desired value,
while using the solution at a particular step as the initial guess
for the next step.

III. EXPERIMENTS AND VALIDATION

A. Experimental methodology

The total current I carried by a slender EHD jet depends on
the flow rate and the applied potential difference for a given
fluid and geometrical configuration [10]. For the same reason,
the current carried by a slender jet cannot be considered as an
independent variable for modeling the EHD jet using Eqs. (6)–
(9). Therefore, to simulate realistic slender EHD jet using the
present model, we used the current values measured during the
experiments. In particular, we used experimental data of Singh
et al. [10] for steady jetting of 1-octanol at varying values
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TABLE I. The values of the measured current and dimensionless
parameters for varying values of flow rate Q and applied potential
difference φ. The working fluid is 1-octanol, the outer diameter of
the needle dn = 1 mm, and aspect ratio χ = 20.

Q φ I Re We Fr Pe E
(ml min−1) (kV) (nA) ×10−2 ×10−4 ×10−3

3.0 4.8 108.8 3.3 7.6 0.83 5.55 3.1
3.0 5.2 113.8 3.3 7.6 0.83 5.55 3.4
3.0 5.6 120.2 3.3 7.6 0.83 5.55 3.8
3.0 6.0 127.0 3.3 7.6 0.83 5.55 4.2
2.5 4.8 101.3 2.7 5.3 0.57 4.63 3.8
3.0 4.8 110.4 3.3 7.6 0.83 5.55 3.1
4.0 4.8 130.8 4.4 13.5 1.47 7.40 2.5
5.0 4.8 151.9 5.5 21.1 2.29 9.26 2.2

of applied potential φ at a fixed Q. In these experiments,
jetting is dominated by inertia and the effect of polarization
are negligible [10]. The jetting in this regime occurs under the
following condition as suggested by Gañán-Calvo [35],

Q

Q0
�

(
1

Re0

Q

Q0

)1/4

and

(
1

β

Q

Q0

)
� 1, (14)

where the characteristics flow rate Q0 = (γ ε0/ρk) and elec-
tric Reynolds number Re0 = [ρε0γ

2/(kη3)]1/3. We used the
current data at Q = 3 ml min−1 and χ = 20 for varying
potential difference. The physical properties of 1-octanol
are ρ = 825.5 kg m−3, η = 8 mPa s, γ = 26 mN m−1,
k = 4.05 µS m−1, and ε = 9.15 × 10−11 F m−1. In these
experiments, Q/Q0 ∼ O(100), Re0 ∼ O(1), and β = 10.3,
therefore, the condition for dominant inerta and negligible po-
larization forces given by Eq. (14) is satisfied. Table I presents
values of the total current I and dimensionless numbers cor-
responding to the varying values of φ taken from Singh et al.
[10].

In addition to the experimental data from the litera-
ture, we performed experiments for varying flow rates,
Q = 2.5 ml min−1 to Q = 5.0 ml min−1 at constant φ with
1-octanol. We used the same experimental setup and followed
the similar methodology as Singh et al. [10]. Briefly, the
experimental setup consisted of a 35-mm-long metallic needle
having an inner diameter of 0.66 mm and an outer diam-
eter of 1.0 mm placed perpendicular to a 50-mm-diameter
circular collector disk at a distance 10 mm from the nee-
dle tip. We applied a fixed potential φ = 4.8 kV on the
metallic needle and grounded the collector substrate. The
working liquid was pumped through the needle using a sy-
ringe pump (KD Scientific, Legato 180). We visualized the
jet through a stereo-microscope (Radical Scientific, 8 − 50×
zoom) equipped with a camera. We captured the snapshots
of the jet using the camera and simultaneously measured the
current carried by the jet through a laboratory-made current
measuring setup. Table I presents the values of the measured
currents at φ = 4.8 kV and for varying flow rates, and the
corresponding dimensionless parameters.

FIG. 2. Comparison of jet profiles measured in the experiments
and predicted by numerical simulations (a) for constant flow rate Q =
3.0 ml min−1 at three values of applied potential: (i) φ = 4.8 kV,
(ii) φ = 5.2 kV, and (iii) φ = 5.6 kV, and (b) for constant applied
potential φ = 4.8 kV at three different values of flow rate: (i) Q =
3.0 ml min−1, (ii) Q = 4.0 ml min−1, and (iii) Q = 5.0 ml min−1.
Numerically predicted jet profiles agree well with the experimental
observations for varying values of Q and φ.

B. Experimental validation

Figure 2 shows the comparison of simulated and mea-
sured steady-state jet profiles at varying values of Q and
φ. The red lines show the simulated jet profiles overlayed
on the corresponding snapshots of the jet obtained from the
experiments. In particular, Fig. 2 shows a comparison of six
different cases grouped into two categories, one at a constant
Q = 3.0 ml min−1 and varying φ as shown in Fig. 2(a) and
another at a constant φ = 4.8 kV and varying Q as shown in
Fig. 2(b). This figure shows that the jet profiles obtained from
the numerical simulations agree well with the experimental jet
shape. However, there is a small but noticeable deviation in
the predicted jet profile at a high flow rate (Q = 5.0 ml min−1

and φ = 4.8 kV) close to the needle as shown in Fig. 2(b)(iii).
For the remaining cases shown in Fig. 2, the agreement be-
tween the simulations and the experiments is excellent. The
discrepancy in the prediction of jet shapes is primarily due
to two main reasons. First, the asymptotic approximation of
the Coulomb’s law, Eq. (4), has a higher deviation from the
exact equation for electric field near the domain boundaries.
Second, as explained in Appendix, the fringe electric field
at needle tip is 3D in nature which is only approximately
incorporated in the quasi-1D model through E∞. Despite
these approximations, our model shows a maximum of 10%
deviation in the predictions of the jet radius from the exper-
iments, which is a reasonably good prediction considering
the simplicity of the model. Therefore, this experimentally
validated model can be confidently used to estimate the spatial
variation in various physical properties of a slender EHD
jet, such as local electric field, free surface charge density,
various current components, and the magnitudes of different
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FIG. 3. Axial variation of simulated dimensionless physical vari-
ables from the needle tip to collector plate: (a) jet radius R̃, (b) local
electric field Ẽ , (c) surface charge density σ̃ , and (d) individual com-
ponents of the total current: conduction current Ĩc = Ẽ R̃2 and surface
convection current Ĩs = PeR̃σ̃ ṽ. This simulation was performed for
Re = 3.3, We = 7.6 × 10−2, Fr = 0.83, Pe = 5.55 × 10−4, and E =
3.1 × 10−3 corresponding to Q = 3.0 ml min−1 and φ = 4.8 kV. The
jet radius gradually decreases toward the collector substrate. The
conduction current does not completely convert to convection current
downstream. Additionally, the jet properties vary smoothly over the
entire jet path.

force terms, which otherwise cannot be directly measured in
experiments.

IV. RESULTS AND DISCUSSION

Having validated the simulations with the experiments,
we now present the axial variation of the physical proper-
ties of the jet from the needle tip to the collector plate.
Figure 3 shows the axial variation of the dimensionless jet
radius R̃, local electric field Ẽ , surface charge density σ̃ ,
and components of the current: conduction current Ĩc = Ẽ R̃2

and surface convection current Ĩs = Peσ̃ R̃ṽ, respectively at
Re = 3.3, We = 7.6 × 10−2, Fr = 0.83, Pe = 5.55 × 10−4,
and E = 3.1 × 10−3 corresponding to Q = 3.0 ml min−1 and
φ = 4.8 kV. Figure 3 shows that the jet radius decreases faster
near the needle tip and almost attains an asymptotic value
downstream. The axial electric field gradually rises to a peak
value and then smoothly relaxes downstream. The surface
charge density increases gradually along the flow direction
and then remains nearly constant throughout the jet path.
Because R̃, σ̃ , and Ẽ are related through the charge conser-
vation equation Eq. (7), slow variations of R̃ and σ̃ induce a
gradual variation of Ẽ . Figure 3(d) shows the axial variation
of the dimensionless bulk conduction and surface convection
currents. The total current carried by the jet is primarily due to

FIG. 4. Various contributions to the axial electric field. The same
data is replotted in inset (b) on a semilog plot to show the rela-
tive magnitude of various contributions of the axial electric field.
The electric field due to polarization charges is negligibly small,
Ẽβ = ln χ (β/2)d2(Ẽ R̃2)/dz̃2 ≈ O(10−2), and the electric field due
to free surface charges approximately balances the external electric
field Ẽ∞ in the elongated conical meniscus where R̃ ∼ O(1). In the
inset (c), the approximations of the charge density near the cone
σ̃c ≈ ∫

Ẽ∞dz̃/(ln χ R̃) and far downstream (z̃ ∼ χ ), σ̃χ = R̃/Pe, are
plotted along with the σ̃ obtained from the charge conservation
Eq. (7). Close to the needle tip, σ̃ ≈ σ̃c, which suggests that the
surface charges develop such that the external electric field does not
penetrate into the liquid meniscus close to the needle tip.

the conduction current in the elongated conical meniscus near
the needle outlet. The conduction current gradually decreases
while the surface convection current monotonically increases
downstream. Although the surface convection current Ĩs in-
creases at the expense of the conduction current (Ĩc), Ĩc does
not completely transform to Ĩs downstream of the conical
meniscus. The profiles of σ̃ , Ẽ , Ĩc, and Ĩs of the slender EHD
jet significantly differ from the cone-jet, wherein σ̃ and Ẽ
shoot to their peak values and then relax downstream within
a relatively narrower region close to cone tip [22,23]. More-
over, in a cone-jet, the conduction current entirely converts
to the convection current across the current transfer region,
which lies at two to five radial distances from the needle tip
downstream [22,23].

Figure 4(a) shows the axial variation of various contri-
butions to the axial electric field Ẽ in Eq. (9). Shown in
Fig. 4 are the net axial electric field Ẽ , external electric
field Ẽ∞, electric field due to free surface charges Ẽσ =
− ln χd (σ̃ R̃)/dz̃, and that due to the polarization charges
Ẽβ = ln χ (β/2)d2(Ẽ R̃2)/dz̃2. The external electric field due
to applied potential φ is of form A/z, except at the needle out-
let, where A is a constant that depends on the applied potential
φ. From Fig. 4(a), we notice that the local electric field Ẽ
gradually increases close to the needle, surpasses the external
field in the intermediate region, and approaches the external
field Ẽ∞, downstream where jet attains an asymptotic limit.
To compare the order-of-magnitude of various contributions
to the overall electric field, Ẽ , Ẽ∞, Ẽσ , and Ẽβ are plotted
on a semilog plot in Fig. 4(b). The polarization field Ẽβ is
negligibly small throughout the jet as shown in Fig. 4(b).
Moreover, the electric field due to free charges completely
counteracts the external electric field in the vicinity of the nee-
dle tip. In the conical meniscus region where R̃ ∼ O(1), the
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FIG. 5. Axial variation of various forces governing the steady EHD jetting. (a) The force densities in momentum equation [Eq. (8)]
are evaluated for Re = 3.3, We = 7.6 × 10−2, Fr = 0.83, Pe = 5.55 × 10−4, and E = 3.1 × 10−3 corresponding to Q = 3.0 ml min−1 and
φ = 4.8 kV. The sign of resisting forces have been reversed for easy comparison with the driving forces. In the inset, (b) the absolute value
of the forces are replotted on the semilog plot. The inertia force F̃i and tangential electric force F̃te are significantly larger than all other forces
throughout the jet except in the vicinity of the needle tip, where interfacial tension force F̃st approximately balances the free charge repulsion
force F̃rp.

charges develop on the surface in such a way that the external
field does not penetrate the meniscus. In this region, the local
electric field is equal to the field necessary to carry the total
current, Ẽ ≈ 1/R̃2. To show that Ẽσ ≈ Ẽ∞ in the vicinity of
the needle tip, we note that close to the needle Ẽβ � Ẽ∞ and
Ẽ ≈ 1/R̃2 � Ẽ∞. Therefore, the surface charge density near
the needle tip can be approximated as using Eq. (9),

σ̃c = 1

ln χ R̃(z)

∫ z

0
Ẽ∞(ξ )dξ . (15)

The approximate value of surface charge density σ̃c is plotted
along with the simulated surface charge density σ̃ in the inset
of Fig. 4. From Fig. 4(c), we observe that σ̃ ≈ σ̃c in the vicin-
ity of the needle, where R̃ ∼ O(1). However, downstream, the
approximated surface charge density (σ̃c) deviates from the
actual (σ̃ ) because Ẽ is no longer negligible compared with
Ẽ∞. Physically, as the jet cross section decreases downstream,
the resistance to axial charge conduction increases. Hence,
the charges must be carried through the surface convection
to ensure the continuity of the current. Therefore, the surface
charge density surges due to lower jet speed in the elongated
conical meniscus. However, downstream, σ̃ approaches an
asymptotic limit when R̃′ → 0 and Ẽ → Ẽ∞. Downstream,
the order of magnitude of the surface charge density can be
estimated from the fact that the surface convection current ap-
proaches the total current, hence at z̃ = χ , Ĩs ≈ 1 and the sur-
face charge density σ̃ approaches R̃/Pe as shown in Fig. 4(c).

Next, to describe the physics of slender EHD jet, we es-
timate individual force terms in the momentum equation (8).

The various forces that govern the EHD jetting phenomenon
can be grouped into driving and resisting forces, and are
plotted in Fig. 5(a). In addition, to clearly distinguish the
order-of-magnitude of various forces, these forces are replot-
ted on a semilog plot in Fig. 5(b). The driving forces stretch
the jet while the resisting forces oppose the jet’s stretching.
The force due to gravity force F̃g = 1/Fr, tangential elec-
tric force F̃te = 2E σ̃ Ẽ/R̃, and free charge repulsion force
F̃rp = E σ̃ σ̃ ′ stretch the jet, whereas inertia force F̃i = ṽṽ′, vis-
cous force F̃ν = 3(R̃2ṽ′)′/(ReR̃2), and interfacial tension force
F̃st = (1/WeR̃)′ resist the jet’s stretching; here prime over
the variables represents the derivative of the corresponding
variable with respect to axial distance z. Moreover, the polar-
ization force F̃β = EβẼ Ẽ ′ can stretch or resist the stretching
of the jet depending on the axial location. From Fig. 5(b),
we observe that the inertia and tangential electric forces are
dominant forces, charge repulsion and surface tension forces
are subdominant forces, and gravity, viscous, and polarization
forces are negligibly small. We also note that F̃i and F̃te are
small near the needle tip compared to F̃rp and F̃st, suggesting
that the elongated conical meniscus results from the balance of
surface tension and charge repulsion forces. However, for z̃ �
5, where the jet is significantly stretched, F̃i and F̃te exceed all
other forces. This suggests that the downstream EHD jetting
is governed by the balance of inertia and tangential electric
forces. Besides the tangential electric force, free charge re-
pulsion force also contributes to the jet’s stretching in the
intermediate region, 5 � z̃ � 10. Moreover, in the intermedi-
ate region, surface tension F̃st resists the jet’s stretching.
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FIG. 6. Sensitivity of the jet radius. Axial variation of the rela-
tive change in the jet radius corresponding to a 1% change in the
various dimensionless model input parameters has been plotted. The
reference values of dimensionless numbers are: Re = 3.3, We =
7.6 × 10−2, Fr = 0.83, Pe = 5.55 × 10−4, and E = 3.1 × 10−3. The
jet radius is most sensitive to the Pe and E .

A. Sensitivity analysis

The nondimensional governing Eqs. (6)–(9) suggest that
the EHD jetting is governed by the following dimensionless
numbers: Reynolds number Re, Weber number We, Froude
number Fr, electrical Peclet number Pe, electric-to-inertia
force E , and permittivity ratio β. However, EHD jetting be-
havior is not sensitive to all these dimensionless numbers.
Therefore, we performed sensitivity analysis to identify the di-
mensionless model parameters that significantly affect the jet
characteristics. To this end, we individually perturbed the
value of each dimensionless model parameter and evaluated
their effect on the predicted jet radius by computing the cor-
responding fractional change in the radius |	R̃/R̃)| × 100%.
The sensitivity analysis was performed for the same parameter
corresponding to Figs. 3−5. That is, at Re = 3.3, We = 7.6 ×
10−2, Fr = 0.83, Pe = 5.55 × 10−4, and E = 3.1 × 10−3 for
Q = 3.0 ml min−1 and φ = 4.8 kV.

Figure 6 shows the axial variation of the relative change in
the jet radius on perturbing the individual dimensionless pa-
rameters. This figure shows that the fractional change in the jet
radius is most sensitive to Pe, E , and We. Other dimensionless
parameters (Fr, Re, and β) have a considerably lower effect
on the jet radius because the gravity, viscous, and polarization
force terms are negligibly small in the moderately stretched jet
of 1-octanol. Additionally, we also notice that the jet radius is
primarily sensitive to Pe and E far downstream. The Peclet
number governs the amount of charge on the jet surface, and
E governs the relative strength of the dominant electric and
inertia forces. For the same reason, the asymptotic jet radius
or diameter depends primarily on Pe and E .

B. Effect of flow rate and applied potential

Having described the effect of relevant forces and dimen-
sionless numbers on the moderately stretched EHD jet, we
now discuss the effect of flow rate and potential difference on
the jetting behavior, which are the primary operating parame-
ters in EHD jetting. The stable EHD jetting occurs for a wide
range of flow rates but a narrow range of the applied potential
[10,13]. We present the simulation results for two cases: (i)

for varying Q at fixed φ = 4.8 kV and (ii) for varying φ at
fixed flow rate Q = 3.0 ml min−1. Note that the total current
I also varies with Q and φ as shown in Table I. Hence, the
reference scales for the local electric field I/πkR2

0 and the
surface charge density ε0I/πkR2

0 vary on varying Q and φ.
Consequently, dimensionless numbers dependent on I also
vary on varying the φ and Q. Therefore, for comparing the
jetting behavior at varying Q and φ (and hence I), hereafter all
physical quantities are presented in their dimensional form.

1. Effect of flow rate

Figures 7 shows the axial variation of R, σ , E , Ic/I , and
Is/I at four different flow rates, Q = 2.5, 3.0, 4.0, and 5.0 ml
min−1. Figure 7(a) shows that the jet thickens on increasing
the flow rate, except close to the needle, z/R0 � 5, where
the jet radius does not vary significantly. This is because, for
z/R0 � 5, the elongated cone shape is governed by the balance
of interfacial tension and charge repulsion forces, which do
not depend on the flow rate. In contrast, for z/R0 � 5, the jet
stretches due to the balance of inertia and tangential electric
forces. In particular the radius of the jet near the collector
R(z = L)/R0 ∼ Q as shown in the inset of Fig. 7(a). This is
consistent with the experimentally observed scaling of jet ra-
dius for moderately stretched jet reported by Singh et al. [10].
The ratio of the tangential electric force to the inertia force
is represented by the dimensionless electric-to-inertia force
E = ε0E2

0 /ρv2
0 ∼ I2/Q2. As shown in Table I, the dimension-

less electric-to-inertia force E decreases with increasing Q at a
fixed φ. Therefore, the strength of tangential stretching forces
decreases compared with the inertia as Q increases, resulting
in a thicker jet at higher Q.

Figure 7(b) shows the axial variation of surface charge
density σ for varying Q. From Fig. 7(b), we notice that the
surface charge density σ varies marginally with Q. An in-
significant change in surface charge density throughout the jet
can be understood by considering approximations of σ at two
extreme axial locations, one near the needle tip and the
other far downstream. From Eq. (15), the charge den-
sity near the needle tip can be approximated as σ ≈∫

ε0E∞dz/R ln(L/R0). Because E∞ is independent of Q, and
R does not vary much with Q near the needle tip, σ varies
marginally with Q. Near the collector plate, the convection
current tends to the total current, hence the surface charge
density can be approximated as σ ≈ I/πRv, as shown in
Fig. 4(b). From the simulation results, we found that the max-
imum variation in downstream jet velocity v is approximately
5% for all cases, and both I and R increase almost in the
same proportion. In particular, a thicker jet at a higher flow
rate offers lesser conduction resistance. Then correspondingly
increase in I offsets increase in R and σ ≈ I/Rv, leading to a
marginal change in σ .

Next, we present the effect of varying Q on the axial
electric field as a function of z in Fig. 7(c). The electric field
decreases with Q in the intermediate region 5 � z/R0 � 10.
However, the flow rate has little effect on the local electric
field in the region where R ∼ O(1) and far downstream. Close
to the needle tip (z/R0 � 5), Ic ≈ I , and hence the electric
field E ≈ I/kπR2 ∼ I/R2. Because R/R0 ∼ O(1) varies neg-
ligibly with Q near the needle tip and the E ∼ I , the local
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FIG. 7. Physical properties of the slender EHD jet at varying Q at φ = 4.8 kV: (a) jet radius R, (b) surface charge density σ , (c) electric
field E , and (d) fraction of the conduction current Ic/I and the convection current Is/I . The jet thickens on increasing the flow rate, and the
asymptotic jet radius scales scales as R/R0 ∼ Q, as shown in the inset of (a). The surface charge density is relatively invariant of the flow rate.
Close to extreme ends, E is higher at higher Q. However, in the cone region z/R0 � 5, E decreases with increasing Q. The fraction of the
conduction current increases with increasing flow rate while the fraction of the convection current behaves oppositely.

electric field E increases with I , and hence with Q, which can
be seen in Fig. 7(c). In the asymptotic jet region (z/R0 � 10),
the local electric field is independent of the flow rate because
E approaches E∞ downstream, and the external electric field
E∞ does not vary with Q. In the intermediate region, the
elongation of the meniscus intensifies the local electric field
due to the surge of surface charge density σ . Finally, Fig. 7(d)
shows that the fraction of conduction current increases while
convection current decreases with Q because a thicker jet at
higher Q offers lesser resistance to charge conduction, result-
ing in a higher fraction of conduction current.

2. Effect of applied potential

Next, we discuss the effect of varying potential difference
φ on the behavior of the slender EHD jet. Figures 8(a)–8(d)
show the axial variation of R, σ , E , Ic/I , and Is/I at four differ-
ent values of applied potential, φ = 4.8, 5.2, 5.6, and 6.0 kV
at a fixed flow rate Q = 3.0 ml min−1. The higher potential
difference leads to greater stretching of the jet and, conse-
quently, a thinner jet at higher φ. The effect of φ on the down-
stream behavior of the jet is the opposite of that of the flow
rate because increasing φ leads to an increase in the driving
tangential force Fte, whereas increasing Q increases the resist-
ing inertia force Fi. Therefore, as the jet thins at higher φ, the
fraction of the conduction current decreases while the convec-
tion current increases with φ, as can be seen from Fig. 8(d),
in order to maintain the total current I . The surface charge
density in the asymptotic jet region scales as σ ∼ IcQ/R ∼
IQ/R. Since R ∼ Q and I increases with φ, σ increases with
an increase in φ as observed in Fig. 8(b).

Figure 8(c) shows the variation of the axial electric field as
a function of z. From Fig. 8(c), we notice that the local electric
field E increases with φ from the needle tip to the collector
plate. However, increase in E is relatively negligible in the
vicinity of the needle tip and maximum in the intermediate
region where jet stretching is most significant. Despite the
increase in φ and E∞, E changes marginally in the cone region
because the charges on the cone surface completely screen
the local electric field, as shown in Fig. 4. In the intermediate
region, the jet stretching intensifies the local electric field, and
the jet stretches more at higher φ; hence E increases with φ

in this region. Downstream, where E ∼ E∞, the axial electric
field increases with φ due to an increase in E∞.

V. CONCLUSIONS

We have described the physics of moderately stretched
slender EHD jets observed in the EHD jet printing process.
Such EHD jets form at a relatively high flow rate and mod-
erate electric potential. Unlike the classical cone-jet, which
has a very localized cone-to-jet transition, the length of the
cone-to-jet transition region for a moderately stretched jet
is the order of the needle-to-collector distance. As opposed
to the cone-jets, the moderately stretched jet’s characteristics
depend on the geometrical configuration.

In this work, we have considered inertia-dominated mod-
erately stretched EHD jet issuing from a long metallic needle
held close to the collector under a strong electric field.
To describe the physics of the jet, we have used a quasi-
one-dimensional leaky-dielectric jet model with boundary
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FIG. 8. Jet characteristics for varying φ at Q = 3.0 ml min−1: (a) jet radius R, (b) surface charge density σ , (c) electric field E , and
(d) fraction of the conduction current Ic/I and the convection current Is/I . The jet stretches more with increasing φ. In addition, the surface
charge density and the local electric field increase with φ except close to the needle tip. The fraction of conduction current decreases while the
convection current increases with φ.

conditions relevant to the EHD jet printing process. We have
presented detailed experimental validations of numerical sim-
ulation for varying process parameters. After that, we have
explained the underlying physics of slender EHD jets based
on numerically predicted physical quantities. The stretching
of the jet is governed by the inertia and tangential electric
shear forces in the developed jet region, whereas the jet shape
is governed by the surface tension and charge repulsion forces
near the tip of the needle. Through simulations, we showed
that, unlike the cone-jets, at moderate jet stretching, the con-
duction current does not completely convert to convection
current downstream. Furthermore, using simulations, we have
also discussed the dynamics of slender EHD jets for varying
process parameters by examining physical quantities, such
as jet radius, surface charge density, local electric field, and
conduction and convection currents. The physical understand-
ing of the inertia-dominated moderately stretched EHD jets
described here can be helpful for the design, performance
monitoring, and control of EHD jet printing.

In the current work, we focused on the EHD jetting caused
by dominant inertia and tangential electric forces. Although
the bulk of liquids display EHD jetting dominated by in-
ertia and tangential electric forces, some other liquids may
exhibit jetting where viscous and polarization forces domi-
nate. Applying the current methodology to examine jetting of
moderately stretched EHD jet applicable to EHD jet printing
configuration for liquids with dominant viscous and polar-
ization forces would be a logical extension of the current
research. Similarly, the simulation approach presented here
can be extended in the future for modeling non-Newtonian
liquids.
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APPENDIX: FRINGE FIELD

The fringe electric field near the needle tip is three-
dimensional in nature [38]. To accommodate this nonuniform
3D electric field in the quasi-1D mathematical model, we
use numerically computed the external electric field E∞(z)
in Eq. (4). To this end, we performed full-scale numerical
simulations using a commercial finite element solver to obtain
the external electric field between the needle and the collector
plate in the absence of the jet. We used a computational do-
main replicating the exact experimental setup described in the
experimental section. We solved Laplace equation, ∇2φ = 0,
in the domain with the boundary conditions: φ = φ0 at the
needle, φ = 0 at the collector plate, and insulated far-away
boundaries. We discretized the computational domain using a
triangular mesh and performed grid dependency tests to obtain
an accurate solution. Figure 9(a) shows that the electric field
is 3D in nature close to the needle, whereas beyond few radial
distances from the needle, the field points along the axial
direction. Figure 9(b) shows the corresponding variation of
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FIG. 9. Simulated electric field distribution around the needle tip in the absence of the jet. A solid metal needle of length 35 mm with
an inner diameter of 0.64 mm and outer diameter of 1.0 mm is kept perpendicular to a 50.0-mm-diameter circular metallic collector plate. A
potential of 4.8 kV was applied on the needle and the collector plate was grounded. (a) Predicted equipotential lines and electric field lines
(with arrows). Most of the potential decays close to the metallic needle and the electric field is 3D in nature near the needle. However, beyond
a few radial distances from the needle tip, the equipotential lines are almost uniformly distributed and the electric field is approximately along
the axial direction. (b) The variation of the axial electric field E∞(z).

the axial electric field E∞(z) which is incorporated in Eq. (4).
While the nonuniformity in the external axial electric field is
incorporated in the quasi-1D model through E∞(z), the exact

3D nature of the field near the needle is not accounted for,
which may be responsible for the discrepancy in the prediction
of the jet radius near the needle.
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